Онтогенез. От клетки до человека

         
Онтогенез. От клетки до человека
Джейми Дейвис


New Science
Как мы стали такими, какие мы есть? Почему у нас две руки и ноги, но только одна голова? Почему человеческое тело симметрично, но в то же время его половинки не полностью идентичны? Почему отпечатки пальцев однояйцевых близнецов не одинаковые? Как развивался наш мозг и что такое сознание? Почему мы смертны и какой в этом биологический смысл?

Подобные вопросы люди задавали себе с древнейших времен. Даже сейчас, при современном развитии науки, не до конца понятны те фундаментальные принципы, благодаря которым из единственной оплодотворенной яйцеклетки формируется такой сложно организованный организм, состоящий из множества молекулярных структур, которые взаимодействуют друг с другом, имеют свой собственный цикл жизни, способны к регенерации и саморазвитию. «В основе этого лежит принцип центральной адаптивной самоорганизации», – говорит современная биология. Но что же собой представляет этот принцип?

Джейми Дейвис проделал огромную работу по адаптации сложнейшего научного материала для уровня, понятного массовому читателю. В увлекательной и ироничной форме, снабдив свой рассказ более чем 80 иллюстрациями, автор приглашает читателя в путешествие через все аспекты биологического развития человека – от зачатия до смерти. Последние достижения эмбриологии, генетики, физики, нейропсихологии позволят нам узнать больше о стволовых клетках и белковом метаболизме, различиях между хромосомами и функциях генов, нейронных связях и прочих важнейших факторах, влияющих на внутреннюю эволюцию человека.





Джейми Дейвис

Онтогенез. От клетки до человека


Посвящается Кэти



Life Unfolding

How the human body creates itself

JAMIE A. DAVIES



Научный редактор

Юлия Краус, ведущий научный сотрудник кафедры биологической эволюции биологического факультета МГУ, кандидат биологических наук.



© Oxford University Press

© Перевод на русский язык ООО Издательство «Питер», 2017

© Серия «New Science», 2017


* * *


Эта книга издана в рамках программы «Книжные проекты Дмитрия Зимина» и продолжает серию «Библиотека фонда «Династия». Дмитрий Борисович Зимин – основатель компании «Вымпелком» (Beeline), фонда некоммерческих программ «Династия» и фонда «Московское время». Программа «Книжные проекты Дмитрия Зимина» объединяет три проекта, хорошо знакомых читательской аудитории: издание научно-популярных переводных книг «Библиотека фонда «Династия», издательское направление фонда «Московское время» и премию в области русскоязычной научно-популярной литературы «Просветитель».




Благодарности


Я глубоко признателен доктору Кэти Брукс за ее неустанную поддержку, терпение, которое она проявляла всякий раз, когда я выбивался из графика работы, а также полезные комментарии к первому варианту текста.

Я также хотел бы поблагодарить моих коллег. Это Джеймс Бриско, Майк Клинтон, Ким Дэйл, Меган Дэйви, Питер Кайнд, Вэл Уилсон, Джорджия Перона-Райт, Томас Тайл и Шэрил Тикл. Они оказали мне огромную услугу: проверили разделы книги, посвященные темам, в которых являются мировыми экспертами. Вся вина за оставшиеся в тексте ошибки лежит исключительно на мне. И наконец, я хочу выразить свою благодарность Латхе Менон и ее коллегам из издательства Oxford University Press за ценные редакторские замечания.




Этическое заявление


Эта книга описывает механизмы развития человека. Она содержит опубликованную в научных изданиях информацию, полученную при изучении эмбрионов человека, а также в ходе экспериментов на животных. Поскольку академические издательства и исследовательские фонды требуют, чтобы работа была проверена соответствующими независимыми комиссиями по этике, я сделал допущение, что процитированные в этой книге эксперименты отвечали стандартам того времени, когда они проводились. Этические стандарты постоянно меняются, и некоторые исследования, которые проводились много лет назад, сейчас запрещены. Упоминание результатов конкретных экспериментов в этой книге не подразумевает личного этического одобрения использованных в них методов ни автором, ни издателем книги.




Пояснение по поводу ссылок и сносок


Книга адресована широкому кругу читателей, поэтому механизмы развития человека описываются в ней без излишних молекулярных подробностей. Длинные списки непроизносимых названий белков навевают скуку даже на профессиональных биологов и были бы совсем неуместны в книге, посвященной разъяснению фундаментальных закономерностей развития. Тем не менее иногда детали, упущенные в основном тексте, поясняются в сносках. Они позволят студентам биологических и медицинских специальностей увязать обсуждаемые в книге вопросы со специальными публикациями по молекулярной эмбриологии. Таким образом, эти сноски предназначены для узкого круга читателей и необязательны для понимания книги в целом.

По тем же причинам в книге иногда приведены ссылки на специальные исследования, особенно в тех случаях, когда необходимо подкрепить аргументами отличную от традиционной точку зрения. Чтобы не перегружать текст, число подобных ссылок сведено к минимуму; кроме того, они, как правило, отсылают не к оригинальным экспериментальным статьям, как это обычно делается в академических изданиях, а к обзорам. Также опущены ссылки на материал, освещенный в обычных учебниках. Текст, испещренный тысячами сносок, уместен в научной монографии, но не в популярной книге.




Вступление


Знание не убивает предвкушения чуда, тайны. Там этой тайны еще больше.

    Анаис Нин




Глава 1

Столкновение с чуждыми нам технологиями


История человека в течение девяти месяцев до рождения, возможно, гораздо интереснее, чем вся его оставшаяся жизнь.

    Сэмюэль Тэйлор Кольридж

В этих словах английский философ и поэт Сэмюэль Кольридж выразил поэтическим языком удивление ребенка, впервые спросившего родителей: «Как я появился на свет?» Многие взрослые полагают, что этот вопрос касается половых отношений, и начинают мучительно раздумывать о том, что и когда можно рассказать. Однако ребенка вовсе не волнуют эти психосоциальные сложности, его вопрос и проще и глубже – как может появиться новый человек?

Еще ни один ребенок не получил полного и правильного ответа, потому что никто из взрослых не знает наверняка. Во времена Кольриджа были известны отдельные факты о последовательности анатомических изменений, происходящих по мере того, как новый человек растет в матке, но то, как и почему они происходят, оставалось загадкой. Два последующих века ученые пытались понять, как же оплодотворенная яйцеклетка превращается в ребенка. За последнее десятилетие наука шагнула далеко вперед, но по мере того, как ученые расшифровывают сложнейшие механизмы и разгадывают конкретные загадки, общее чувство изумления только растет. История эмбрионального развития, пока что обсуждающаяся в основном в специализированных научных статьях, поистине поразительна. Эта история о том, что произошло с каждым из нас, и потому должна быть общим достоянием. Мне посчастливилось работать в этой области, и в этой книге я попытался собрать наиболее значимые результаты современных исследований и дать ответ на самый глубокий – и самый детский – вопрос: как я появился на свет?

Наше понимание эмбрионального развития человека сложилось не в рамках какого-то одного научного подхода, а явилось результатом обобщения огромного количества информации из разных областей знания. Эмбриология и неонатология, напрямую изучающие развитие человека, предоставили в наше распоряжение большое количество анатомической и функциональной информации. Генетика и токсикология, области более широкие, чем биология развития, имеют огромное значение для выявления причин врожденных аномалий. Это очень важно, потому что, зная эти причины, можно выявить каскады биохимических реакций (так называемые молекулярные пути), необходимые для нормального развития соответствующих частей тела. Биохимия и молекулярная биология незаменимы для выявления деталей работы молекулярных путей, вовлеченных в развитие, вплоть до уровня взаимодействия атомов биологических молекул. Клеточная биология позволяет объяснить, как за счет взаимодействия разных молекулярных путей обеспечивается контроль поведения отдельных клеток. Исследуя более высокий уровень организации, физиология, иммунология и нейробиология раскрывают способы коммуникации и координации множества клеток.

Все упомянутые дисциплины относятся к областям медицины или биологии, в которых традиционно и проводились исследования по эмбриологии человека. Однако последнее время вклад в понимание развития человека внесли также области науки, которые на первый взгляд вообще не имеют отношения к этой теме: математика, информатика и даже философия. Они не проясняли конкретные детали (что и когда делает та или иная клетка), но затрагивали фундаментальные вопросы, связанные с развитием, например: как простое может стать сложным? как механизмы развития, неустойчивые по отношению к случайным ошибкам, могут обеспечивать высокую точность воспроизведения конечного результата? и не слишком ли развитие человека сложно для того, чтобы его могли полностью понять даже интеллектуально развитые люди? Последний из этих вопросов остается открытым, и предметом спора является слово «полностью». Однако в решении первых двух вопросов удалось достичь значительного прогресса. Ответ кроется в двух смежных концепциях: «эмерджентность» и «адаптивная самоорганизация». Это фактически две стороны одного и того же явления. «Эмерджентность» – это возникновение сложных структур и вариантов поведения из простых составных частей и правил; этот термин, как правило, используют те, кто смотрит на систему «вниз» с позиции «поведения на высоком уровне». «Адаптивная самоорганизация» – это «взгляд вверх»; этот термин позволяет описать, как применение этих простых правил к компонентам системы приводит к их коллективному поведению – выполнению сложных и тонких задач большого пространственного масштаба.[1 - Синонимами (или подтипами) адаптивной самоорганизации являются «роевой интеллект» и «коллективный разум». Эти термины часто используются при изучении общественных насекомых или даже человеческих популяций, но их словесные формулировки наводят на мысль о «сознательности» того, что они описывают, и применительно к молекулам и клеткам звучат странно. Я предпочитаю термин «адаптивная самоорганизация», который в физических и математических кругах используется для описания того же явления.]

Именно благодаря адаптивной самоорганизации неживые молекулы могут создать живую клетку, а клетки с ограниченными индивидуальными возможностями – сформировать способный на многое многоклеточный организм. Адаптивная самоорганизация – лейтмотив моей книги, так как она лежит в основе биологии развития. Понятия «адаптивная самоорганизация» и «эмерджентность» выходят за рамки биологии, и в разделе «Дополнительная литература» я привел несколько ссылок на увлекательные книги по этой теме.

Новые данные биологии развития ясно говорят о том, что организм возникает совсем не так, как строятся здания или машины. Смешно, но факт: способы образования нашего собственного тела абсолютно чужды нашим представлениям о том, как это могло бы быть. Поэтому, пытаясь понять, как эмбрион строит сам себя, очень полезно сравнить – и противопоставить – развитие этой биологической системы с привычными способами строительства объектов.

У всех инженерных проектов, будь то сборка локомотива или строительство здания, есть общие черты. Прежде всего у любого проекта есть определенный план – это может быть чертеж или какая-либо иная схема, – ясно показывающий, что же мы хотим получить в итоге. План показывает ожидаемый результат, но частью этого результата он не будет. У каждого проекта есть руководитель – главный инженер или архитектор, – который дает указания подчиненным, а те, в свою очередь, рабочим, которые и выполняют укладку кирпича, резку, сварку и покраску. Детали будущей конструкции не могут соединиться вместе сами по себе. Это делают рабочие – каменщики, сборщики, сварщики, – которые сами не являются частью этой конструкции. При этом рабочие и главный инженер владеют огромным объемом «внешней» информации – по технологии сварки или камнетесному делу, – которая не присутствует в объектах, которые они создают. И наконец, большинство рукотворных сооружений вводятся в эксплуатацию только после полного завершения работ.

В биологическом конструировании мы не найдем этих привычных этапов. Это лишний раз подчеркивает разницу между живыми существами и инженерными конструкциями. В отличие от технических проектов, биологическое конструирование не подразумевает никаких чертежей и эскизов конечного результата. Безусловно, в оплодотворенной яйцеклетке содержится информация (в генах, в молекулярных структурах, в пространственном распределении концентраций химических веществ), но связь между этой информацией и тем, как в конечном итоге будет выглядеть готовый организм, далеко не проста. Известно, что эта информация контролирует дальнейшую последовательность событий (а знаем мы это, потому что изменение этой информации, например при мутации гена или изменении концентрации определенного вещества в определенном месте, меняет последовательность событий, и развитие идет по аномальному пути).

В технике, и особенно в математике, к конечному результату можно прийти при помощи пошаговых инструкций. Рассмотрим пример: посередине пшеничного поля воткните в землю кол и привяжите к нему веревку. Возьмите другой ее конец и пройдите несколько метров, чтобы веревка натянулась. Затем идите направо, сохраняя натяжение. Таким образом можно начертить простейшую окружность. Некоторые структуры гораздо легче создать по инструкциям, чем по чертежам. Если у вас есть под рукой карандаш и бумага, попробуйте по приведенным ниже инструкциям начертить геометрическую фигуру под названием «салфетка Серпинского».

1. Начертите равносторонний треугольник с горизонтальным основанием. Чем больше он будет, тем лучше. Будем считать его «исходным треугольником».

2. Внутри данного треугольника проведите три отрезка. Каждый из них должен проходить из середины каждой стороны в середину смежной. Эти отрезки образуют перевернутый треугольник, занимающий четверть площади исходного.

3. Заштрихуйте полученный треугольник.

4. Теперь вы видите три незаштрихованных треугольника внутри исходного. Проделайте с каждым из них те же операции, что и с исходным треугольников, начиная с пункта 2.

5. (Продолжайте, пока вам не надоест: если вы вооружены хорошим карандашом, это занятие может длиться вечно.)

«Салфетка Серпинского» (благодаря заштрихованным областям чертеж напоминает ажурное вязание) – пример фрактальной структуры. При любом увеличении мы получим одно и то же изображение. Еще один пример фрактала – «множество Кантора». Его удобнее всего рисовать на поверхности, с которой легко стирать. Подойдет школьная доска. Нарисуйте линию, затем сотрите ее среднюю треть, после этого сотрите средние трети двух полученных линий, и так далее. Через некоторое время вы получите множество точек, расположенных через определенные интервалы. Статистические свойства этих интервалов идентичны свойствам многих природных явлений, будь то осыпание песка с бархана или промежутки между каплями воды из подтекающего крана, землетрясениями, эпидемиями и случаями массового вымирания животных.

Пошаговые инструкции, а не эскизы используются для создания объектов не только в математике, но и в повседневной жизни; простейший пример – кулинарный рецепт. По такому же принципу работает и текстильное производство, от ручного вязания («одну петлю провязываем, одну накидываем») до «жаккардовой машины» (1801 г.), первого в мире промышленного робота, на котором можно было, меняя перфокарты, переключать уровни сложности от простейшего до самого сложного узора. Музыка также воспроизводится благодаря инструкциям, роль которых выполняют нотные знаки на нотном стане, по которым музыкант может воспроизводить звуки необходимой высоты и продолжительности в нужный момент времени.

Многовековой опыт использования инструкций для получения задуманного результата с минимальными затратами времени и усилий приводит к тому, что мы склонны считать, что биологическая информация определяет наш внешний вид каким-то похожим образом. Это опасное заблуждение. Между живыми организмами и рукотворными объектами есть существенное отличие: в последнем случае инструкциям следует внешний сознательный агент действия. Даже такие, казалось бы, явные исключения, как автоматическая вязальная машина или механическое пианино, созданы по инструкциям и планам теми же внешними агентами, а значит, исключениями не являются. Проще говоря, кардиганы, симфонии, автомобили и соборы сами себя не создавали. Следование инструкциям, привнесение необходимой информации о процессе (умение вязать, готовить или класть кирпич) и собственно работа с материалами осуществляются не самой растущей структурой, а извне. Напротив, содержащаяся в эмбрионе информация считывается и обрабатывается самим эмбрионом; ему не на кого переложить ни тяжелую физическую работу, ни раздумья об оптимизации процесса. Как мы скоро увидим, это означает, что ответственность за биологическое конструирование лежит на всех его участниках, а не на руководителе, как в случае реализации инженерных проектов. Процесс создания тела человека контролируется не какими-то отдельно взятыми частями эмбриона, а системой в целом.

Чтобы понять особенности процесса построения, необходимо также иметь некоторое представление о природе используемых материалов. Рядом с моей лабораторией в Эдинбургском университете находятся три знаменитых моста: элегантный мост Дин, построенный Томасом Телфордом, легендарный железнодорожный мост через залив, построенный Бенджамином Бейкером, и, неподалеку от него, автодорожный мост Форд-Роуд. Телфорд построил мост из каменных блоков – тяжелых, громоздких, надежных только за счет сжимающего напряжения. Поэтому он использовал традиционный метод: сначала строились опоры, затем сооружался деревянный каркас для арочного пролета, затем на него выкладывались обтесанные в форме арки камни. После того как вес камня стабилизирует пролет, каркас можно удалить.

Бейкер использовал для строительства железнодорожного моста радикально новый по тем временам материал – сталь. Этот материал может держаться как за счет растяжения, так и за счет сжимающего напряжения, поэтому строительство можно было начинать с любой опоры, прикрепляя к ней секции одним концом. Чтобы поместить длинные и относительно легкие стальные секции на нужное место, использовались подъемные краны. Между собой эти секции соединялись с помощью заклепок.

Вантовый мост, самый новый из трех, держится за счет стальных тросов, вант, которые закреплены на пилонах на разных берегах. В данном случае сначала были установлены пилоны, затем намечены опорные точки для крепления тросов, а затем постепенно натягивались держащие мост ванты.

В каждом из этих случаев стратегия строительства моста определялась характером материалов. Ни один из них нельзя было бы построить, используя стратегию, предназначенную для моста другого типа. Так же и в биологии: стратегия конструирования зависит от природы участвующих в нем компонентов. Таким образом, настало время представить вам три ключевых биологических компонента, которые будут много раз упомянуты в этой книге, – это белки, матричная РНК (мРНК) и ДНК.